Decision Trees for handling Uncertain Data to identify bank Frauds
نویسنده
چکیده
Classification is a classical problem in machine learning and data mining. In traditional decision tree classification, a feature of a tuple is either categorical or numerical. The decision tree algorithms are used for classify the certain and numerical data for many applications. In existing system they implement the extended the model of decision tree classification to accommodate data tuple having numerical attributes with uncertainty described by arbitrary pdfs. So proposed work in this paper is new improved decision tree for both a data representing structure and a method used for data mining and machine learning. The decision trees assist in this work of selecting the attribute that will develop a better performance in finding the required uncertainty information to find the bank fraud. .
منابع مشابه
A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining
Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...
متن کاملDeveloping Decision Trees for Handling Uncertain Data
Classification is one of the most efficient and widely used data mining technique. In classification, Decision trees can handle high dimensional data, and their representation is intuitive and generally easy to assimilate by humans. Decision trees handle the data whose values are certain. We extend such classifiers i.e, decision trees to handle uncertain information. Value uncertainty arises in...
متن کاملBank Fraud in Asia
as “unmanaged risks.” The term “unmanaged” connotes the practical difficulties associated with managing fraud risk effectively and dynamically. In recent years, while the number of publicized frauds—unauthorized usage of credit and ATM cards, checking account fraud, Nigerian scams, etc.—increased, these cases merely constituted the tip of the iceberg. Estimates are that just 20% of frauds are e...
متن کاملClassification of Categorical Uncertain Data Using Decision Tree
Certain data is a data whose values are known precisely whereas uncertain data means whose value are not known precisely. But data is always uncertain in real life applications. In data uncertainty attribute value is represented by a set of values. There are two types of attributes in data sets namely, numerical and categorical attributes. Data uncertainty can arise in both numerical and catego...
متن کاملHandling uncertain labels in multiclass problems using belief decision trees
This paper investigates the induction of decision trees based on the theory of belief functions. This framework allows to handle training examples whose labeling is uncertain or imprecise. A former proposal to build decision trees for twoclass problems is extended to multiple classes. The method consists in combining trees obtained from various two-class coarsenings of the initial frame.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012